DUTY: The Diagnosis of Urinary Tract Infections in Young Children Study.

STUDY PROTOCOL

Sponsor: University of Bristol
Sponsor ref: 871
Funder: National Institute for Health Research Heath Technology Assessment Programme (NIHR HTA)
Funder ref: HTA 08/66/01
REC ref: Southmead REC 09/H0102/64
This protocol has been authorised by:

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerry Hood</td>
<td>SEWTU Director</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christopher Butler</td>
<td>Chief Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alastair Hay</td>
<td>Chief Investigator</td>
<td></td>
<td>15/01/10</td>
</tr>
</tbody>
</table>

Chief Investigators:

<table>
<thead>
<tr>
<th>Professor Chris Butler</th>
<th>Dr Alastair Hay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of Department of Primary Care and Public Health, 3rd Floor, Neuadd Meirionnydd, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN</td>
<td>Consultant Senior Lecturer in Primary Health Care, NIHR School for Primary Care Research, Academic Unit of Primary Health Care, School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol. BS8 2PS</td>
</tr>
</tbody>
</table>

Tel: 02920 687168
email: ButlerCC@cardiff.ac.uk

Tel: 0117 928 7376
email: alastair.hay@bristol.ac.uk

Co-Investigators:

Jonathan Benger
Professor of Emergency Care, University of Bristol.

Peter Brindle
Locality Director of the Primary Care Research Network-South West, Research and Development Lead Bristol PCT and GP Principal.

Brendan Delaney
Guys’ and St Thomas’ Charity Chair in Primary Care Research. Kings College, London.

Jan Dudley
Consultant Paediatric Nephrologist, University Hospitals Bristol.

Margaret Fletcher
Reader in Children’s Nursing and Co-director of SW Medicines for Children Research Network (MCRN).

William Hollingworth
Reader in Health Economics, University of Bristol.
Kerenza Hood
Professor of Statistics and Director of the South East Wales Trials Unit, Cardiff University.

Robin Howe
Consultant Microbiologist and Head of the Wales Public Health Laboratory Reference Laboratory, University Hospital of Wales.

Paul Little
Professor of Primary Care Research, Southampton University.

Alasdair MacGowan
Professor of Clinical Microbiology and Antimicrobial Therapeutics, University of Bristol and Head of Medical Microbiology, North Bristol NHS Trust.

Alan Montgomery
Reader and Director of the Bristol Randomised Trials Collaboration, University of Bristol.

Kathryn O’Brien
Clinical Lecturer, Department of Primary Care and Public Health, Cardiff University.

Jonathan Sterne
Professor of Medical Statistics and Epidemiology, Department of Social Medicine, University of Bristol.

Penny Whiting
Research Fellow, University of Bristol.

Judith van der Voort
General Paediatrician and Paediatric Nephrologist, University Hospital of Wales.

Study Statistician:
Professor Jonathan Sterne,
Medical Statistics & Epidemiology,
School of Social and Community Medicine
University of Bristol.

Study Managers:
Harriet Downing
Research Project Manager,
School of Social and Community Medicine
University of Bristol
Harriet.Downing@bristol.ac.uk

Dr Emma Thomas ~Jones
Project Manager,
SEWTU, Cardiff University
thomas-jonesE@cardiff.ac.uk

Please contact the Study Managers for general queries and supply of study documentation.
Table of Contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Glossary of Abbreviations</td>
</tr>
<tr>
<td>ii</td>
<td>Definitions</td>
</tr>
<tr>
<td>iii</td>
<td>Keywords</td>
</tr>
<tr>
<td>1</td>
<td>Study Summary</td>
</tr>
<tr>
<td>1.1</td>
<td>Study Schema</td>
</tr>
<tr>
<td>1.2</td>
<td>Participant Flow Diagram</td>
</tr>
<tr>
<td>1.3</td>
<td>Study Design Summary</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Study Aims</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Study Outcome Measures</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Study Population</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Study Eligibility</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Study Duration</td>
</tr>
<tr>
<td>2</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.1</td>
<td>Background</td>
</tr>
<tr>
<td>2.2</td>
<td>Rationale</td>
</tr>
<tr>
<td>2.3</td>
<td>Research Question</td>
</tr>
<tr>
<td>3</td>
<td>Study Objectives</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Aims</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Objectives</td>
</tr>
<tr>
<td>4</td>
<td>Study Design</td>
</tr>
<tr>
<td>4.1</td>
<td>Study Outline</td>
</tr>
<tr>
<td>4.2</td>
<td>Study Period</td>
</tr>
<tr>
<td>4.3</td>
<td>Frequency & Duration of Follow-up</td>
</tr>
<tr>
<td>4.4</td>
<td>Study Outcomes</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Primary Outcomes</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Secondary Outcomes</td>
</tr>
<tr>
<td>5</td>
<td>Participant Selection</td>
</tr>
<tr>
<td>5.1</td>
<td>Inclusion Criteria</td>
</tr>
<tr>
<td>5.2</td>
<td>Exclusion Criteria</td>
</tr>
<tr>
<td>6</td>
<td>Recruitment</td>
</tr>
<tr>
<td>6.1</td>
<td>Recruitment Process</td>
</tr>
<tr>
<td>6.1.1</td>
<td>GP Practice Recruitment</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Collection of Urine Samples</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Walk in Centre/Polyclinic Recruitment</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Children’s Emergency Department Recruitment</td>
</tr>
<tr>
<td>6.2</td>
<td>Registration & Informed Consent</td>
</tr>
<tr>
<td>6.3</td>
<td>Non-registration</td>
</tr>
<tr>
<td>6.4</td>
<td>Withdrawal & loss to Follow-up</td>
</tr>
<tr>
<td>6.5</td>
<td>Payment</td>
</tr>
<tr>
<td>7</td>
<td>Study Procedures</td>
</tr>
<tr>
<td>7.1</td>
<td>Data collection & Case Report Form (CRF)</td>
</tr>
<tr>
<td>7.2</td>
<td>Collecting of Urine Samples & Dipstick Testing</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Maximising Urine Samples</td>
</tr>
<tr>
<td>7.3</td>
<td>Laboratory Processing of Urine Samples</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Processing of Urine by NHS Laboratories</td>
</tr>
</tbody>
</table>
8.1 Definitions

8.2 Evaluating & Reporting Adverse Events

9

9.1 Sample Size Calculations

9.2 Statistical Analysis

9.3 Minimising Bias

9.4 Sub-group & Interim Analysis

9.5 Cost Effectiveness Analysis

9.5.1 Economic Model Structure

10

Data Storage & Retention

11

Study Closure

12

Regulatory Issues

12.1 Ethical Approval

12.2 Consent

12.3 Confidentiality

12.4 Indemnity

12.5 Study Sponsorship

12.6 Audits & Inspections

13

Study Management

14

Data Handling & Record Keeping

15

Service User Involvement

15.1 Aims

15.2 Methods

15.3 Dissemination to Participants

16

Publication Policy

17

Project Timetable & Milestones

18

References

19

Appendices
i) Glossary of Abbreviations:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCU</td>
<td>Clean Catch Urine</td>
</tr>
<tr>
<td>CED</td>
<td>Children’s Emergency Department</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Unit</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>CSO</td>
<td>Clinical Studies Officer</td>
</tr>
<tr>
<td>CVU</td>
<td>Clean Voided mid-stream Urine</td>
</tr>
<tr>
<td>PCO</td>
<td>Primary Care Organisation</td>
</tr>
<tr>
<td>RN</td>
<td>Research Nurse</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary Tract Infection</td>
</tr>
<tr>
<td>WIC</td>
<td>Walk-in Centre</td>
</tr>
</tbody>
</table>

ii) Definitions:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Culture</td>
<td>A growth of a single microorganism of (>10^5) cfu/ml of urine following culture.</td>
</tr>
<tr>
<td>Borderline culture/borderline result</td>
<td>A growth of a single organism of between (10^4) and (10^5) cfu/ml, or a mixed growth ((>1) organism) of (10^5) cfu/ml of urine following culture.</td>
</tr>
<tr>
<td>Contamination</td>
<td>Presence of microorganisms which are unlikely to represent urinary tract pathogens.</td>
</tr>
<tr>
<td>Research Site</td>
<td>One of the four partner organisations (Bristol, Cardiff, London, Southampton), at which the Principal Study Investigators are based.</td>
</tr>
<tr>
<td>Primary Care Sites</td>
<td>Any primary care centres (General Practices, WICs, CEDs, Out of Hours GP Cooperatives or Polyclinics) at which children will be recruited.</td>
</tr>
</tbody>
</table>

iii)Keywords: Urinary Tract Infection, children, primary care, point-of-care-test, dipstick test, near-patient testing.
1 Study Summary
1.1 Study Schema

Overall study schema

Recruit organisations providing first point of care for acutely unwell children

Recruit children under five years of age presenting with constitutional symptoms or UTI and/or urinary symptoms

Collect data on presenting symptoms and signs and past medical history
Obtain urine sample

Urine sample tested with dipstick, result given to clinician and entered on CRF.
Urine sample divided and sent to local NHS laboratory through routine collection and to Cardiff NPHS research laboratory by overnight post

Culture >10^5 CFU ml from NHS laboratory or >10^7 from Cardiff laboratory

12-21 day follow-up by telephone (for all)

3 month notes review (for all)

Culture $\leq 10^5$ from NHS laboratory and $\leq 10^5$ CFU ml from Cardiff laboratory

12-21 day follow-up by telephone (for sample number matched to those >10^3 CFU ml)

3 month notes review (for sample number matched to those >10^3 CFU ml)
Participant Flow Diagram

Parents of children under 5 years of age who have approached the surgery and requested an appointment are identified by reception staff or nurse and given information about the study and asked to indicate if they would like to see the RN/CSO before they see the clinician.

Parent & child see RN/CSO who:
- Answers questions about the study
- Assesses eligibility
- Takes consent
- Collects basic information
- Explains to parents how to get urine sample

Parent & child see Doctor/Nurse who:
- Answers questions about the study
- Assesses eligibility
- Takes consent
- Collects basic information
- Explains to parents how to get urine sample

Parent & child see RN/CSO who:
- Answers questions about the study
- Assesses eligibility
- Takes consent
- Collects basic information
- Explains to parents how to get urine sample

Parent & child see Doctor/Nurse who:
- Answers questions about the study
- Assesses eligibility
- Takes consent
- Collects basic information
- Explains to parents how to get urine sample

Parent & child see Doctor/Nurse who:
- Answers questions about the study
- Assesses eligibility
- Records diagnostic & examination information

Parent & child see RN/CSO who:
- Answers questions about the study
- Assesses eligibility
- Records diagnostic & examination information

Parent & child see RN/CSO who:
- Answers questions about the study
- Assesses eligibility
- Records diagnostic & examination information

Urine sample provided to RN/CSO (either during visit or done at home and returned to the surgery). Parent receives voucher from RN/CSO as 'Thank You' token. Urine sample tested with dipstick by RN/CSO, result passed to clinician and recorded on CRF/website.

Management due to local clinical practice

12-21 day follow-up by telephone (for those >10^3 CFU ml and a sample <10^3 CFU ml)

3 month medical notes review (for those >10^3 CFU ml and a sample <10^3 CFU ml)

Indicates that the parents can choose to participate either before or after the child sees the doctor/nurse.
1.3 Study Design Summary

DUTY is an observational study of the factors associated with UTI in children presenting in primary care. After completion of recruitment, patients will be split into development and validation sets for the development and testing of a new clinical prediction rule.

1.3.1 Study Aims

Primary Aim
To derive and validate a clinical algorithm for the diagnosis of UTI, in children aged before their fifth birthday presenting to primary care with an acute illness.

Secondary Aims
In children aged before their fifth birthday presenting to primary care, whose parents or carers have requested an appointment for an acute illness of less than or equal to 28 days:

1. To identify the additional value of a point-of-care dipstick urine test.
2. To model cost-effectiveness of one or more diagnostic algorithm guided strategies.
3. To compare contamination rates for two urine sampling methods.
4. To compare the results obtained from local NHS laboratories with the Cardiff Research laboratory
5. To explore the clinical significance of various threshold levels of positive urine culture.
6. To explore the clinical significance of mixed positive urine cultures.

1.3.2 Study Outcome Measures

Primary outcome
➢ To test the specificity and sensitivity of the algorithm using the reference standard of a pure/predominant growth of >10^5 colony forming units per millilitre (cfu/ml) of a single coliform or other recognised uropathogen as found in the NHS laboratory.

Secondary outcomes
➢ Effect of various diagnostic thresholds of positive culture for UTI on algorithm sensitivity and specificity.
➢ Sensitivity and specificity of point of care dipstick for identifying positive cultures.
➢ Symptom duration (measured between Day 12 and Day 21 from recruitment) and NHS contacts (measured at month 3).
1.3.3 Study Population
- Children aged before their fifth birthday, with an acute illness of equal to or less than 28 days presenting to primary care (GP practices, WICs, Out of Hours GP Cooperatives, CEDs or Polyclinics) in four UK regions (based around London, Bristol, Cardiff, Southampton).

1.3.4 Study Eligibility
- Children aged before their fifth birthday;
- Having approached the primary care site and requested an appointment for a new acute illness episode of equal to or less than 28 days.

1.3.5 Project Duration
- 3 years starting 1st January 2010.
2 Introduction
2.1 Background

Epidemiology and sequelae of UTI in children.

Acute illness in young children is one of the most common reasons for consulting health care worldwide. Reported rates of UTI in consulting children vary widely (from 1% to 9% depending on setting and inclusion criteria).1,2,3,4,5 Most of this research has been hospital based: the prevalence of UTI in acutely ill children presenting to most of primary care is not known--no published study has yet systematically sampled urine from this population, although our smaller study, EURICA is ongoing. The diagnosis is difficult to make and may be missed in as many as 50% of children presenting to primary care.6,7 UTIs in young children cause acute morbidity and recurrent symptoms that may indicate functional and anatomical abnormalities. In some young children, UTI may lead to renal scarring,8 leading to poor renal growth, recurrent pyelonephritis, impaired glomerular function, early hypertension, end stage renal disease9 and pre-eclampsia.10,11,12 Some guidelines recommend aggressive, early antibiotic treatment for symptoms suggestive of UTI in young children to prevent renal scarring.13

Predictive value of symptoms and signs for UTI in young children.

A recent systematic review considered 8,837 mostly pre-verbal children from 12 studies.6 Meta-analyses of data for the pre-verbal children showed that fever, non black race (likelihood ratio [LR] 1.4; 95% confidence interval [CI], 1.1-1.8), a history of a previous UTI (LR range, 2.3-2.9), temperature higher than 40°C (LR range, 3.2-3.3), and suprapubic tenderness (LR, 4.4; 95% CI 1.6-12.4) were the findings most useful for identifying those with a UTI. Uncircumcised boys were also more likely to have a UTI (summary LR, 2.8; 95% CI 1.9-4.3). Circumcision was the only finding with an LR of less than 0.5 (summary LR, 0.33; 95% CI, 0.18-0.63). Combinations of findings were more useful than individual findings (for temperature >39°C for >48 hours without another potential source for fever on examination, the LR was 4.0; 95% CI, 1.2-13.0; and for temperature <39°C with another source for fever, the LR was 0.37; 95% CI, 0.16-0.85). However, although individual symptoms and signs were helpful in the diagnosis of a UTI, they were not sufficiently accurate to definitely rule in UTI, although a combination of findings could identify infants with a low probability of UTI.5
This review is limited by: (1) included studies were set in the US private and emergency care system where consultation and investigation threshold differs from UK primary care which is free at the point of delivery; (2) children had to either already have symptoms of UTI or fever ≥38°C, so many subtle symptoms and signs may not have been considered; (3) urine sampling was by catheter or suprapubic aspiration (which is not feasible in UK primary care and from which any bacterial growth is regarded as significant); (4) diagnostic criteria used were different (≥10^4 cfu/ml) to UK practice; (5) the relationship between ethnicity and UTI could be confounded and; (6) none of the studies checked the external validity of the findings, meaning that estimates of association could be inflated.15

Only one clinical algorithm derived from primary research for the diagnosis of UTI young children was identified. This was conducted in febrile girls <2 years in one US Emergency Department16 and validated in a case-control study in a different, single Emergency Department.17 They found that ≥3 of age <12 months; white race; temperature of ≥39°C; absence of any other likely source of fever; or fever for ≥2 days gave an area under the curve of 0.72, a sensitivity of 88% (95% CI 79% to 94%) with a false-positive rate of 70% (61% to 79%). Another study found that symptoms, signs and urinalysis were neither good at ruling in or ruling out UTI in children with neurogenic bladders.18

Additional value of dipstick testing in young children.

The recent HTA review found there was inadequate evidence on the diagnostic performance of dipstick tests for protein or blood.19 The combination of a positive test for both nitrite and leucocyte esterase (LE) was most accurate for ruling in UTI (pooled LR+ 28.2 (95% CI: 17.3, 46.0)), and a negative test for both nitrite and LE was most accurate for ruling out UTI (pooled LR- 0.20 (0.16, 0.26)). The NICE UTI guideline development group concluded that there was insufficient evidence to recommend the use of dipstick urine tests for children <3 years.20

Diagnosing UTI in young children presenting in primary care.

The clinical diagnosis of UTI in young children is difficult because: (1) Pre-verbal (predominantly <3 years old) children cannot articulate symptoms and present with the same non-specific symptoms (e.g. fever, irritability, vomiting and poor feeding) when suffering from a wide rage of illnesses;21 (2) identifying dysuria and frequency in children wearing nappies (<3 years) is difficult; (2) obtaining urine samples is often frustrating and time consuming for parents/guardians and costly to the health service, 21,22 and; (3) NICE does not recommend routine urine dipstick in children <3 years because of a lack of research evidence.20 UTI diagnosis
is therefore often delayed, missed or symptoms attributed to other causes (such as otitis media).

Dramatic reductions in antibiotic prescribing for children with upper respiratory infections may have reduced serendipitous treatment of undiagnosed UTI and the consequent prevention of renal scarring. NICE promotes early recognition and treatment to prevent short-term suffering and possibly serious long-term complications. However; increased urine sampling will increase costs, consultation length and frequency of consultations in primary care. Rightly, clinicians will only increase their sampling rates if evidence shows this really does improve the identification of UTI among the many acutely unwell children consulting primary care.

Economic impact of UTI.

We know from studies of the General Practice Research Database (GPRD) that UTI is the 4th most common reason for prescribing antibiotics, accounting for approximately 8% of all antibacterial prescriptions. Whilst the unit costs of laboratory testing and antibiotic prescribing are relatively low, the economic implications of new clinical algorithms for urine sampling and testing may be substantial in young children because: (1) the large numbers of pre-verbal children who present with non-specific symptoms who might be candidates for urine sampling and testing; (2) the cost of subsequent diagnostic tests (e.g. ultrasound, Micturating Cystourethrogram (MCUG) and Dimercaptosuccinic Acid (DMSA) scans) used to further evaluate children with recurrent/atypical UTI; (3) the substantial societal costs and utility detriments of a missed diagnosis that leads to rare but serious complications of UTI; and (4) the wider, long-term population impact of diagnostic algorithms on antibiotic prescribing and resistance.

The few economic evaluations of methods for diagnosing urinary tract infections in young children have primarily evaluated ‘which tests to use?’ rather than ‘who to test?’. The Health Technology Assessment report evaluated 79 permutations of dipstick, cultures, ultrasound, and MCUG, and identified four testing strategies most likely to be cost-effective, although the optimal strategy differed by gender and age group. Current NICE guidance on testing strategies for UTI in children under age 3 is not based on evidence of cost-effectiveness.

Summary

Good quality evidence regarding the externally validated predictive value of symptoms, signs and urinalysis for UTI in young children is urgently needed to help
primary care clinicians better identify UTI. Furthermore, since obtaining urine samples is especially challenging in children <5 years, any resulting algorithm should be constructed to answer two separate questions. First, which children warrant urine sampling and second, can dipstick urinalysis help clinicians determine which samples should be sent for laboratory culture. The algorithm so developed should then be the subject of a validation study. In addition, since there is no evidence to help clinicians decide which urine sampling method to use, we propose an observational comparison of contamination rates for nappy pad and ‘clean catch’ sampling. Finally, since changes in the frequency with which urine samples are requested has implications for parents/guardians and the NHS, we propose to model the economic impact (from the NHS and societal perspectives) of current vs. diagnostic algorithm guided diagnosis and management with respect to the cost per correctly identified UTI, cost per symptomatic day avoided and the cost per quality adjusted life year.

2.2 Rationale

- NICE guidelines state that good quality evidence regarding the externally validated predictive value of symptoms, signs and urinalysis for UTI in young children is urgently needed to help primary care clinicians better identify UTI.
- DUTY will provide novel, clinically important information on the epidemiology and presentation of childhood UTI that will be used to develop a feasible and cost effective clinical tool to help primary care clinicians in the UK and worldwide improve the efficiency of diagnosing UTI in young children. This will help minimise acute suffering and may help prevent serious long-term complications. A web based decision aid (similar to those currently used to estimate cardiovascular risk) could be made available for routine use in the NHS via the National Library for Health. DUTY will improve understanding of the optimum bacterial concentration for UTI in young children and provide comparison data on nappy pad and ‘clean catch’ sampling methods.

2.3 Research Question

What is the best way to diagnose a urinary tract infection in young children aged less than 5 years of age presenting to primary care with an acute illness of equal to or less than 28 days duration?
3 Study Objectives

3.1 Research Aims

The overall aim of the DUTY study is to derive and validate an algorithm for the diagnosis of UTI in children less than 5 years of age presenting to primary care with an acute illness. The algorithm will be constructed in two stages: identification of children at risk (in whom a urine sample should be obtained) and determining the added value of point-of-care urine dipstick testing. The findings may be combined to produce an overall algorithm.

3.2 Research Objectives

1) To develop an algorithm that accurately identifies children presenting in primary care with an acute illness in whom a urine sample should be obtained, based on socio-demographic factors, medical history, symptoms and signs.

2) To assess whether dipstick urinalysis for nitrite, leukocyte esterase, protein, blood and glucose gives additional diagnostic information to objective (1) in the identification of urine samples that should be sent to the laboratory.

3) To model cost-effectiveness (cost per correct diagnosis of UTI, cost per symptomatic day avoided, and lifetime cost per quality adjusted life year, including potential long term complications of UTI) from NHS and societal perspectives of one or more diagnostic algorithm guided strategies.

4) To compare contamination rates for nappy pad versus "clean-catch" urine sampling methods.

5) To explore the impact of two different urine categories on symptom duration (measured between Day 12 and Day 21 from recruitment) and the number of NHS contacts (at 3 months): (i) urines categorised as ‘contaminated’ by the NHS laboratory (compared with NHS laboratory urines categorised as ‘no growth’ and: (ii) bacteriuria concentrations >10^4 cfu/ml but <10^5 cfu/ml with bacteriuria concentrations >10^3 but <10^4 cfu/ml, both defined by the Cardiff NPHS research laboratory.

4 Study Design

4.1 Study Outline

DUTY is a multicenter, diagnostic accuracy study (research objectives 1 and 2 above), decision analytical model (3), nested analytical (4) and follow up study (3 and 5) to derive and validate a cost effective algorithm for the diagnosis of UTI in children aged less than 5 years presenting to primary care with an acute illness.

Children will be recruited from primary care, being any NHS health service providing first-point-of-contact face-to-face advice for parents/guardians of unwell
children (GP practices, WICs, Out of Hours GP Cooperatives, CEDs and Polyclinics). Children will be eligible if they are aged before their fifth birthday and are presenting with a new acute illness episode of less than or equal to 28 days in duration, and if the parent or carer has approached the primary care site and requested an appointment for the child’s acute illness. A CRF will be completed for all eligible, consented children and a urine sample obtained. The prevalence of UTI will be determined on laboratory culture. An algorithm will be derived and validated.

4.2 Study Period
The study will last for three years from 1st January 2010.

4.3 Frequency and Duration of Participant Follow-Up

- Recruitment
At the initial consultation (and time of recruitment into study), each participant will be seen by a RN/CSO from the local recruitment centre who will obtain consent, complete the CRF and obtain a urine sample. Children will be eligible for the study if they meet the eligibility criteria at the point of recruitment and their parents or carers have approached the primary care site and requested an appointment for the child’s acute illness. Participants will then be seen by the clinician who will record examination findings, working diagnosis and treatment on the CRF. Clinical management of the participant will be according to the clinician’s normal practice. For most participants (those with a negative urine result) this will complete their active involvement in the study.

- Telephone follow up between Day 12 and Day 21 from recruitment
Each Research Site (Bristol, Cardiff, London and Southampton) will telephone all children with culture positive (as defined by the NHS laboratory at $>10^5$ cfu/ml and the Cardiff research laboratory at $>10^3$cfu/ml, estimated to be a maximum of 150 and 300 children per research site respectively) and an equivalent number of children with culture negative urines. This telephone interview will be to record symptom duration (particularly asking if the child responded to treatment <48 hours since NICE has identified this as a marker of ‘atypical UTI’ and recommends DMSA and MCUG in such children) and resource use (e.g. repeat primary care visits, NHS Direct contacts, secondary care costs and personal time and travel costs).
- Month 3 notes review -

Each Research Site will conduct a primary care notes review, for all those selected for telephone follow up as above, for the number of primary care contacts (except NHS Direct). A secondary care notes review will be conducted for all children with a UTI (as determined by the NHS laboratory), and comparator ‘no bacterial growth’ children (likely to be no more than 10 per centre) for secondary care costs (out patient attendances, admissions and investigations (e.g. ultrasound, MCUG or DMSA scans).

4.4 Study Outcomes

4.4.1 Primary Outcome

- To test the accuracy of the algorithm using the reference standard of a pure/predominant growth of >10^5 colony forming units per millilitre (cfu/ml) of a single coliform or other recognised uropathogen.

(For the primary analysis, samples containing ≤10^5 cfu/ml or a mixed growth of ≥2 bacterial species (contaminants) will be regarded as negative samples).

4.4.2 Secondary Outcomes

- For research objectives 1, 2 and 3 (section 3.2), we will explore the effects on algorithm sensitivity, specificity and costs of using >10^5, >10^4 and >10^3 cfu/ml of a pure/predominant growth of a single coliform or other recognised uropathogen. Differences with local laboratory results will also be explored.
- For objective 3 (section 3.2), we will measure symptom duration and resource use (e.g. repeat primary care visits, NHS Direct contacts, secondary care costs and personal time and travel costs) by telephone follow-up between Day 12 and Day 21 from recruitment. Resource use will also be measured at 3 months to assess interim NHS and societal costs.
- For objective 4 (section 3.2), contamination will be defined as a mixed growth of >2 bacterial species at >10^5 cfu/ml.
- For objective 5 (section 3.2), we will measure the number of NHS contacts from the primary and secondary care medical records, and where available, the results of repeat urine samples.
5 Participant Selection
5.1 Inclusion Criteria
Children will be included if:

- Aged before their fifth birthday.
- Presenting at an NHS primary care site (GP practices, WICs, Out of Hours GP Cooperatives, CEDs and Polyclinics).
- Presenting with an acute (≤28 days) illness as the main reason for the parent / carer to have approached the primary care site and requested an appointment.
- Presenting with at least one ‘constitutional’ symptom or sign identified by NICE20 as a potential marker for UTI – that is, fever, vomiting, lethargy/malaise, irritability, poor feeding and failure to thrive and/or at least one urinary symptom identified by NICE20 as a potential marker of UTI – that is, abdominal pain, jaundice (children <3 months only), haematuria, offensive urine, cloudy urine, loin tenderness, frequency, apparent pain on passing urine and changes to continence.

5.2 Exclusion Criteria
Children will be excluded if:

- Aged 5 years and above; illness longer than 28 days duration; no urinary or constitutional symptoms as defined by NICE20 and listed above; known neurogenic (e.g. spina bifida) or surgically reconstructed bladder or urinary permanent or intermittent catheterisation (for whom different bacterial concentration cut points are used).
- Parents/guardians are unable or unwilling to assist with study.
- Presenting with trauma as a predominant present concern.
- Taking any antibiotics in the last 7 days.
- Taking immunosuppressant medication (e.g. anti-rejection drugs, oral or intramuscular steroids or chemotherapy).
- Already recruited into the DUTY study.
- Involved in current research or have recently (within 28 days) been involved in any research prior to recruitment.
- There will be no recruitment to the study after the last transport of the day has departed from that primary care site on Fridays.
- For recruitment at A&E settings only: children will not be eligible if their presentation at A&E is as a direct result of GP referral.

The aim of this study is to have as broad inclusion criteria as possible. Therefore children requiring hospital admission with other ‘obvious’ causes for their symptoms such as otitis media or bronchiolitis, with a history of UTIs and known
abnormalities of the urinary tract, learning difficulties, or re-consulting for an existing illness are all included as long as none of the exclusion criteria apply.

We will include parents/guardians who speak other languages in our study. Language requirements will be assessed on an individual primary care site basis. In our site set-up discussions we will ask each individual site about dominant languages in their patient population. We will then provide Parent Information Sheets and Consent forms translated into the languages as required by the individual practices, and for rarer languages translational services will be provided.

We will comply with Welsh language requirements and the Research Participant Information Sheet, Consent form and any other required participant documentation will be available in Welsh.

6 Recruitment
6.1 Recruitment Process

All primary care sites will display posters detailing the DUTY study.

6.1.1 GP Practice Recruitment

Between 15 and 30 practices will be recruited by each Research Site. Each research site needs to recruit 1500 patients. Experience from a previous study (EURICA) shows that most primary care sites can recruit between 50 and 100 children aged less than 5 years in a year.

Experience from the best recruiting sites in EURICA supports the following approach strategies for DUTY. Where possible, primary care sites will mention the study to parents/guardians of children who are less than 5 years old when they phone for an appointment and ask them to come to the surgery 15 minutes early for further information about the study. Where the study was not raised at the time of making the appointment, parents/guardians of children in this age group already booked in may be phoned and told about the study and invited to attend a little earlier. If they cannot be contacted by telephone, they will be approached on arrival at the surgery, given information sheets about the study, and asked if they would be happy to see the RN/CSO first to discuss the study.

The RN/CSO will discuss study participation and check eligibility criteria. Parents/guardians agreeing to participate will provide written, informed consent. Consenting parents/guardians will be asked to obtain a urine sample. The CSO will
give the appropriate equipment and explain how to collect this. Assistance will be given where necessary. If the parent/guardian wishes to see the GP before consenting, then this can happen, with them returning to the CSO afterwards to complete consent and study materials.

Where possible the Research Nurse/Clinical Studies Officer (RN/CSO) will recruit the participant whilst they are waiting to see the doctor, in order that the participant is not delayed. However, if the participant is getting delayed and it would be more convenient for them, or a clinician has discussed the study with a potential applicant when the RN/CSO is not present in the waiting room (e.g. with another parent/child), the RN/CSO will offer to visit the participant later the same day at their home. The parent/guardian will be asked to sign a form consenting for their contact details to be passed to the RN/CSO face to face, by telephone or fax so that the RN/CSO can subsequently contact the parent/guardian. These contact details will be destroyed as soon as the parent/guardian has been contacted.

6.1.2 Collection of Urine Samples

Suprapubic aspiration (SPA) carries the least risk of contamination\(^\text{27}\) but is invasive and not appropriate or feasible for widespread use in UK primary care. The risk of contamination is low with clean-voided midstream urine (CVU) or ‘clean catch’ samples compared to SPA samples.\(^\text{19}\) However, obtaining clean catch samples can be difficult in children in nappies, and parents/guardians find nappy pads or urine bags preferable.\(^\text{28}\) These may be suitable alternatives to SPA,\(^\text{19}\) but there are few data comparing CVU with pad samples. Thus, the preferred primary care method is the CVU and NICE recommended pad or bag when CVU is not possible.\(^\text{20}\) DUTY will follow this NICE recommendation for collecting urines. Urine sampling can be underway whilst the CSO completes the study ‘Case Report Form’ either on paper or electronically via the study website.

The child can then see the responsible treating clinician who will treat the child according to their usual best practice. The clinician will enter relevant examination findings on the Case Record Form (CRF) or directly on a DUTY secure website. The child will then return to the CSO who will retrieve the urine sample, establishing the method (CCU vs. Nappy Pad) by which it was obtained. The RN/CSO will test this with a urine dipstick. Urine sampling method and dipstick results will be recorded in the CRF/website.

Every effort will be made to obtain the urine sample while the child is at the recruiting site. However, if this is not possible, the parent/guardian will be given the
necessary equipment and advice on taking the sample at home. They will be advised to store it in the fridge and return it to the surgery as soon as possible. The RN/CSO will telephone parents/guardians the next day to remind them to return the sample. Sites and the research team will be able to check if samples have been received at practices (or local laboratories) by logging onto the secure website, which will monitor (in real time) the location of specimens. Once a sample is received in the practice, the practice staff or CSO will test it with a dipstick, pass the result to the responsible clinician, record the results and sampling method on the paper CRF/website. The sample will then be split, labelled and sent to both local and central laboratories as detailed above. The study will not interfere with the usual processing of urine results or the clinician’s routine management.

6.1.3 Walk in Centre/ Polyclinic Recruitment

Walk in Centres (WICs) located in urban areas see large numbers of young children with acute, undifferentiated illnesses. For example, the South Bristol WIC estimates 2,500 contacts for acute, non-traumatic, illnesses in children <5 years annually. Recruitment at WICs will operate in the same way as GP practice recruitment up to and including obtaining the urine, and adding the sampling method and dipstick results to the paper CRF/website. The urine sample will either be collected direct from the WIC or delivered to the child’s GP practice by the parent/guardian, or RN/CSO depending on local specimen collection arrangements, where it will be processed as for GP practice derived samples (see below). All clinical results will be sent to the child’s GP in the usual way. Although the location and integration with existing services of Polyclinics has yet to be finalised in many areas, we anticipate DUTY recruitment methods will follow either the GP practice or WIC model.

6.1.4 Children’s Emergency Department Recruitment

Large numbers of acutely unwell pre-school children attend Children’s Emergency Departments (CEDs) as a first point of contact with fever and other symptoms which merit inclusion in the DUTY study, particularly outside normal working hours. Over 5% of all attendances at a UK CED are due to fever, which represents approximately 1,400 children annually in each of Bristol, Cardiff and Southampton, and more in London. The majority of these are <5 years old. All children attending the CED are rapidly triaged by experienced NHS staff, who will provide a DUTY information sheet and additional verbal information to the parents/guardians of all eligible children and inform parents/guardians about the need for urine collection. The study will then be discussed with the parent(s) /guardian(s) by the treating CED doctor, who will obtain written consent from all
parents/guardians willing to participate. The collection, dipstick and laboratory analysis of urine samples in pre-school children with fever or relevant symptoms (usually using a clean catch method) is standard practice in most CEDs, so minimal change to current practice is required to accommodate the DUTY study.

As a consequence of their underlying illness (e.g. investigation of fever, or for the treatment of pneumonia), a higher proportion of DUTY children recruited at CED sites will be admitted to hospital than children recruited at other primary care sites (e.g. GP practices). It is anticipated that most admissions under these circumstances will be recorded as an expected and unrelated SAE. It is likely that the DUTY study will have a relatively high number of expected and unrelated SAEs as a consequence of recruitment in CED settings.

6.2 Registration & Informed Consent

Reception Staff will give a study information pack to all parents/guardians of consecutive children aged before their fifth birthday who have approached the site and requested an appointment for care, and invite them to talk to a RN or CSO about the study. The parent/guardians will be given time to read the study information in the waiting room. Parents/guardians not interested in hearing more about the study at this stage will have no further contact about the study.

The RN or CSO will answer any questions about the study. Further time will be given to the parent/guardian for reading the material if required, and a further opportunity for asking questions. If the child is eligible for the study, consent will be obtained from those parents/guardians willing for their child to take part. Consent will be taken by a RN or CSO trained in taking consent and in study procedures.

The CRF will be completed for all consented patients. This will be a short medical history including recent antibiotic use and other potential risk factors for UTIs and resistance, and examination findings. An outline of the domains which will be covered in the CRF can be found below in the next section. The CSO will record history details and some examination findings (including temperature, pulse, respiratory rate oxygen saturation and capillary refill time) and obtain a urine sample.

The sample will be tested with a dipstick by the RN or CSO and results given to the responsible clinician, and recorded in the CRF (tests include presence of blood, protein, leucocyte esterase, nitrate).

The sample will then be labelled and processed as described in the study procedures section.
After the child has been seen by the RN or CSO (and if they have not already done so), they will then see the responsible treating clinician, who will manage them according to their normal practice, and complete the examination and management details of the CRF.

6.3 Non-registration

A screening log of all children under the age of five attending for care will be compiled. Details will be recorded of whether they were approached about the study or not, eligibility and whether consent was given or declined. No identifiers will be recorded on this log.

6.4 Withdrawal & Loss to Follow-Up

In the majority of cases the only active participation of participants is at the initial consultation, and withdrawal from the study in most cases is unlikely. In those selected for follow-up, there will be some loss of follow-up, however numbers are anticipated to be small as the telephone interview will be short. Several attempts will be made to contact parents/guardians by telephone, however if unsuccessful after several attempts the questionnaire will then be posted to participants with a stamped addressed envelope for return.

6.5 Payment

Following collection of the urine sample, the parent/guardian will receive a £5 High Street Voucher from the RN/CSO as a ‘Thank You’ token for taking part.

7 Study Procedures

7.1 Data Collection and Case Record Form (CRF)

The web based CRF will contain as many of the known and potential features associated with UTI as are possible without overly compromising the speed and simplicity of completion. **Four sections** will facilitate data entry by different personnel (Research Nurse/CSO/Responsible Clinician) so as to minimise the burden to healthcare professionals undertaking emergency clinics (e.g. ‘same day primary care surgeries’):

1. **RN/CSO**: Socio-demographic data (e.g. date of consultation, name, address to include postcode (to assign an index of socio-economic deprivation), contact telephone number/s, ethnicity, date of birth, and gender).
2. **RN/CSO**: Known previous medical history (e.g. previous UTI, circumcision, child or family history of vesico-ureteric reflux, other abnormalities of the urinary tract, learning difficulties, details of prior surgery, other co-morbidities, recent and previous long term use of medicines, including antibiotics.
3. **Responsible clinician**: Working diagnosis; the severity and where appropriate (e.g. fever\(^1\)) duration of symptoms and signs. In addition to the ‘constitutional’ and ‘urinary’ study eligibility symptoms defined by NICE\(^2\), we will collect information regarding the clinician’s global assessment of illness severity, respiratory and gastro-intestinal symptoms and signs, and the symptoms and signs proposed to NICE to distinguish ‘typical’ from ‘atypical’ UTI (e.g. poor urinary flow and abdominal mass). Primary care clinicians will be asked to record the child’s management, including antibiotic use and immediate referral to secondary care since we will make every effort to obtain urine results from these children. Finally, for the economic analysis, we will ask clinicians to state what their management would be if the patient weren’t enrolled in the DUTY trial (no urine test or treatment for UTI / urine test / treat for UTI). This will provide information on the ‘clinician judgement’ diagnostic strategy that will be a comparator for other diagnostic algorithms.

4. **Practice nurse/Triage Nurse/RN/CSO**: Urine sampling method (including if SPA or catheter in CED) and urinalysis results with date, time of testing, with a prompt to inform the responsible clinician of dipstick result and confirmation that the sample has been sent to the laboratories.

7.2 **Collecting Urine Samples and Dipstick Testing**

Consenting parents/guardians will be asked to obtain a urine sample. The RN or CSO will give the appropriate equipment and explain how to collect this. Assistance will be given where necessary. Urine samples will be obtained using the ‘clean catch’ (preferably) or ‘nappy pad’ method as recommended by the recent NICE guidelines\(^2\). Urine sampling can be underway whilst the CSO/RN completes the study CRF/website.

The RN or CSO will retrieve the urine sample, establishing whether obtained by clean catch or nappy pad. The RN/CSO will test the urine sample with a urine dipstick (Urine Dipstix 8SG, Williams Medical) provided by the study. Urine sampling method and dipstick result will be recorded on the CRF. The urine sample will then be split in half if sufficient quantity is available with the priority fraction being sent to the NHS laboratory and the second ‘research’ fraction being sent to the Cardiff NPHS SACU laboratory.

If a sample is not obtained during this visit the parent/guardian will be asked if they could take this at home, refrigerate the sample and return it to the primary care site or GP if recruited at a primary care site without routine laboratory transport.
7.2.1 Maximising Urine Samples

Obtaining the urine samples will be challenging, and a suboptimal return rate will diminish power and increase risk of bias. Therefore: (1) we will monitor the location of urine specimens using a web-based system. Contact details and clinical data for recruited children will be logged onto the secure study website.

Dipstick urinalysis data may be added after the clinical data and will provide a record of the urine having been obtained. This will allow both the research team and participating sites to identify and call parents/guardians of children who have not yet submitted urine samples.

Both the Research and NHS laboratories will also record the arrival of, and results from, the specimens on the website and; (2) each centre will employ a dedicated study RN and a CSO to assist practices with obtaining urines.

7.3 Laboratory Processing of Urine Samples

As not all the laboratory diagnostic services supporting participating DUTY sites report bacteria \(\leq 10^5 \) cfu/ml, we plan to split all urine samples at the recruiting sites, with the first (priority, minimum 1ml) sample sent in the usual manner to the usual NHS laboratory for routine diagnostic processing, and the second sample sent by post to the NPHS Research Laboratory in Cardiff.

The first part of the urine will be put into containers recommended by the local NHS laboratory and labelled with the child’s details on special DUTY labels provided in the patient packs. Similar DUTY labels will be adhered to the DUTY study specific microbiology form and the sample sent to the local NHS laboratory using the site’s normal method of transport. Any samples not collected within 4 hours will be refrigerated and processed in less than 36 hours.

The other urine part (whatever is left after 1 ml has been reserved for the local laboratory in the case of small samples) will be put into a special DUTY container. This will be labelled with the child’s unique DUTY study ID number and date of birth but no identifiable information, and sent by 1st Class Royal Mail using Post Office approved Safeboxes™ to the Cardiff Laboratory, a method that meets legal requirements and has been successfully used before. Clinicians will receive reports from their local laboratory in the usual way. They will also be informed of any culture results of \(>10^5 \) organisms/ml from the Cardiff NPHS research laboratory.
7.3.1 Processing of Urine Samples by NHS Laboratories

NHS laboratories will be informed of the study and educational materials provided before patient recruitment. They will be reminded of the tasks requested by the DUTY study by the use of study specific laboratory request forms. These are:

1. Log the date and time of specimen arrival on the DUTY secure website.
2. Process the urine and report the result back to the requestor using their own Standard Operating Procedures (SOPs) and Laboratory Information Management Systems (LIMS).
3. Provide a copy of the routine (paper and/or electronic) report to the research team and additional information requested on the DUTY request form. Since laboratories vary in their SOPs, not all of the following will be available (hence the need for Cardiff research laboratory processing) but: microscopy for white and red cells; quantification and purity of bacterial growth; and speciation will be requested. Laboratories will be asked to transcribe this information onto the DUTY web site in order to activate laboratory payment.
4. Keep any isolates from urines with >10^5 CFU/ml in pure/predominant growth for referral onto the Cardiff research laboratory at the end of the study. These should be stored at temperatures of -70°C.

7.3.2 Processing of Urine Samples by the Research Laboratory (Cardiff)

The ‘Cardiff Research Laboratory’ refers to the Public Health Wales Microbiology Laboratory based in Cardiff which had a similar role in the previous EURICA study and has experience in supporting other primary care UTI studies.

1. Urines will be sent overnight by Royal Mail post by the participating sites. Boric acid may be used to stabilise bacterial counts if initial data on bacterial count stability shows this to be needed.
2. On receipt at the Cardiff laboratory, the urine sample will be tested with a dipstick and also tested for low count glucose. Then spiral plating on blood agar and CLED agar will be used to quantify bacteria >2×10^3 CFU/ml and <10^{10} CFU/ml.
3. The bacteria will be identified to species level and stored at -70°C. The urine will be stored frozen.
4. Results will be recorded on a designated laboratory worksheet and entered into the on-line database
5. The study team will also receive laboratory results from the local NHS laboratories.
7.4 Laboratory Definition of UTI

DUTY will collaborate with a large number of laboratories that use the standard of >10^5 cfu/ml35 and study results will need be applicable to current UK practice. A lower threshold, for example, of >10^4 cfu/ml used in US studies, may generate false positives and inappropriate ‘medicalisation’ of illness. Nevertheless, DUTY presents an opportunity to explore the effects of different bacterial concentration thresholds and species on algorithm sensitivity and specificity, and to compare various laboratory thresholds with clinical diagnoses and outcome. This will help both to better meet our main study objective as well as fill an important gap in the evidence base to support common clinical and laboratory diagnostic practice, since current practice is based on old studies of UTI in pregnancy34, 35 and some bacterial species (e.g. coagulase negative staphylococci) achieving diagnostic growth concentrations are unlikely to be urinary pathogens. UTI in DUTY will therefore be defined as >10^5 cfu/ml of a coliform or other recognised uropathogen.

7.4.1 Minimising effects of sample contamination and assessment of asymptomatic bacteriuria

Contamination of urine (a cultured organism from a source other than the urinary tract) can lead to false positives: a rate at 7.2% was identified by comparing pairs of urines obtained by different methods from 203 children.36 All nine (5.4%) children in this study with a mixed culture ≥10^5 cfu/ml of uropathogens (a heavy mixed growth) in their first sample had a UTI excluded in the second.36

In addition, bacteria at ≥10^6 cfu/ml have also been found in the urine of approximately 1.5% of young, asymptomatic, children when screened using the ‘gold standard method’, supra-pubic aspiration,37 and most did not experience long term sequelae.38 So, distinguishing UTI from asymptomatic bacteriuria and bacterial contamination is difficult, and could lead to spurious associations between symptoms (e.g. diarrhoea) and apparent ‘UTI’ that is in reality contamination or potential harmless asymptomatic carriage. Clinicians use the presence of UTI symptoms to help interpret culture positive results but this leads to incorporation bias. In DUTY, we could restrict recruitment to those children with currently recognised symptoms of UTI, but since the purpose of DUTY is to determine the strength of association between currently recognised as well as currently unrecognised symptoms/signs and UTI, it is important that eligibility criteria are as ‘open’ as possible (and that a prospective cohort, as opposed to retrospective case-control, design is used), but without including children in whom a positive culture is unlikely to be clinically relevant (e.g. a well child with conjunctivitis). Therefore, DUTY will recruit children with constitutional and/or urinary symptoms and make the assumption that the presence of pathological bacteria >10^5 cfu/ml growth on culture of their urine is clinically significant. This could result in more urine samples
being tested and more children receiving antibiotics than is strictly necessary, but carries the benefit that more UTIs would be identified and treated promptly.

To minimise contamination, we will use clean catch where possible. Where not possible, the child’s perineum will be thoroughly cleaned and we will use pads for <30 minutes, as described by Liaw et al.28 When found, the impact of three factors on symptom duration (measured between Day 12 and Day 21 from recruitment) and the number of NHS contacts at 3 months: (i) clinician diagnosis (UTI vs. plausible alternative diagnosis); (ii) UTI vs. contamination (as per standard NHS laboratory reporting); and (iii) differing bacteriuria concentrations (measured in the Cardiff research laboratory).

7.5 Patient Follow-Up

7.5.1 Telephone follow up between Day 12 and Day 21 from recruitment

Each RS will telephone all children with NHS or Cardiff research laboratory culture positive UTI (>105 cfu/ml) and an equivalent number of randomly selected children with NHS laboratory culture negative urines to record symptom duration (particularly asking if the child responded to treatment <48 hours since NICE has identified this is a marker of ‘atypical UTI’ and recommends DMSA and MCU in such children) and resource use (e.g. repeat primary care visits, NHS Direct contacts, secondary care costs and personal time and travel costs).

7.5.2 Month 3 notes review

Each Regional Centre will conduct a primary care notes review for all children with NHS laboratory or Cardiff research culture positive UTI (maximum 150) and an equivalent number of randomly selected children (as followed up between Day 12 and Day 21 from recruitment) with NHS laboratory culture negative urines for the number of primary care contacts (except NHS Direct). A secondary care notes review will be conducted for children with a culture positive result and a sample of culture negative children (likely to be no more than 10 per centre) for secondary care costs (out-patient attendances, admissions and investigations (e.g. ultrasound, MCU or DMSA scans).

8 Adverse Events

8.1 Definitions

\textit{Adverse Event (AE)}:

Any untoward medical occurrence in a study participant.
Serious Adverse Event (SAE):

Any untoward and unexpected medical occurrence or effect that: Results in death; is life-threatening (refers to an event during which the participant was at risk of death at the time of the event; it does not refer to an event which might have caused death had it been more severe in nature), requires hospitalisation, or prolongation of existing hospitalisation; results in persistent/significant disability or incapacity; is a congenital abnormality or birth defect.

We do not foresee any related adverse or related serious adverse events happening as a result of this research, as the study involves only a non-invasive urine test which is often part of the routine clinical care of patients. We do, however, foresee a relatively high number of unrelated and expected SAEs as a consequence of hospital admissions of acutely unwell children, especially (though not exclusively) for children presenting to recruiting CED sites.

8.2 Evaluating and Reporting Adverse Events

We will ask parents/guardians and primary care sites to inform the Study Manager of any SAE. The DUTY Study Manager and/or the Chief Investigators will assess the nature of the SAE, for seriousness, causality and expectedness. Following the initial report, follow up data may be requested by the DUTY Study Manager. All reports will be submitted to the SSC. Where the SAE is both related and unexpected the DUTY Study Manager will notify the main REC within 15 days of receiving notification of the SAE.

9 Study Analysis

9.1 Sample Size Calculation

We are particularly well placed to estimate the required sample size, given our experience with the EURICA study, which has already recruited approximately 680 children and found a UTI prevalence rate in children aged under 5 years of 5%. We have considered first the strength of association between candidate predictors (symptoms, signs or dipstick results) and UTI as well as the precision of the final algorithm's sensitivity for the detection of UTI. Taking the most conservative assumptions, i.e. candidate predictors present in 10% of children and an overall UTI prevalence of 2%, 3,000 urine sample results are required to detect an odds ratio of 2.4 with 80% power and a two-sided alpha of 5%. With an overall prevalence of UTI of 2%, an algorithm sensitivity of 80% and 3,100 urines, the 95% confidence interval (CI) will be no more than +/-10%. We propose to recruit

Duty Protocol v1.4 (21/02/2011)
4,000 children with a target of recovering urines from at least 77.5% for algorithm derivation and a further 2,000 children for validation.

9.2 Statistical Analysis
We will use methods appropriate for small proportions40 to estimate the prevalence (with 95% confidence interval) of culture positive urines in acutely unwell children under five years presenting in primary care. This will be undertaken on the whole dataset (n=6000). The degree of variation in prevalence between practices and geographical areas will be explored using two level random-effects logistic regression models (with practice/site as a random effect and area as a fixed effect). This analysis will also explore difference by recruitment site type (general practice, WICs, out of hours providers and CEDs). Children in whom urine samples are obtained will be compared to those who are recruited, but no urine sample is obtained in terms of clinical presentation and demographics.

We will compare the probability of contamination in samples that are retrieved via a ‘clean catch’ method with those using nappy pads, controlling for patient and practice factors in a two level random-effects logistic regression model. We will examine the impact of timing of sample in relation to the time between obtaining the urine transportation (including day of the week) and laboratory analysis on the rates of positive and contaminated urine samples (e.g. exploring if delayed samples such as those taken after daily laboratory collection have an impact on contamination rates).

The sample will then be sub-divided into development and validation datasets. This will be done by randomly selecting practices: all of their patients will then contribute to one of the two datasets. Approximately 4,000 patients will be used for development of the algorithm and 2,000 used for validation.

We will develop a clinical prediction rule based on the linear predictor in a logistic regression model in which the outcome variable is a culture-positive urine result. Candidate prognostic variables will be categorised into demographic background and medical history (for example, gender, previous UTI); both specific and general systemic presenting symptoms and signs (for example overall illness severity, fever, vomiting); and results from urine dipstick analysis (nitrite, leukocyte esterase, protein, blood and glucose). Variables will be included in logistic regression models based on an “inclusive” p value threshold of 0.1. We will check for nonlinear effects of continuous variables, and will examine candidate interactions specified \textit{a priori}. Such effects will be included in the final models as necessary. We will begin by examining the predictive value (based on diagnostic odds ratios and C statistics) of the best predictors from each of the three categories
(socio-demographic and previous medical history, clinical assessment, and dipstick urinalysis) of variables. We will then examine the additional diagnostic value of presenting signs and symptoms (compared with socio-demographic and medical history alone) and of dipstick results (compared with the other two categories). We will examine whether it is possible to identify subgroups of children in whom dipstick testing is and is not justified based on their signs and symptoms. The final diagnostic algorithm will be characterised based on its sensitivity and specificity, and positive and negative likelihood ratios.

Diagnostic and prognostic models that are developed using p-value-based variable selection will inevitably suffer from statistical over-optimism. Therefore, the final models will be validated using the second dataset, and the published decision rule will be based on the linear predictors from the model re-estimated in this validation dataset. In the final stages of analysis, we will examine the sensitivity and specificity of the linear predictor, based on a set of chosen thresholds for positivity. A comparison will be made between the results obtained from the validation and the use of shrinkage based approaches applied to the original development dataset. Sensitivity analyses will consider the value of using a different cut-point (e.g. >10^4) based on Cardiff NPHS Research Laboratory analysed urine samples and also the impact of making different assumptions relating to contaminated samples.

Children with positive urine cultures (‘contaminants’ and ‘UTIs’) who the clinician felt at recruitment had a suspected UTI will be compared to those who the clinician felt there was little probability of a UTI in terms of their subsequent illness course and resource usage over the next three months.

9.3 Minimising Bias

The following design and analytic strategies will be employed to minimise bias:

(1) Selection bias: where possible we will recruit consecutive children; We will ask sites to keep a screening log of patients approached but who did not take part in the study and reasons for this.

(2) Index test technology: all tests (symptoms, signs, nappy pads, dipstick tests) will be carried out using standardised equipment and protocols;

(3) Incorporation bias: the reference standard will consist of culture alone and will not incorporate any of the index tests;

(4) Review bias: observers assessing the index tests will differ from and be blind to those assessing the reference standard (and vice versa);

(5) Verification bias: all children who contribute to the study will have a urine sample sent to assess the reference standard. Children in whom it is not
possible to obtain a sample will be excluded from the analysis. It is unlikely that reasons for failure to obtain urine samples will be related to the index tests but we will compare children with and without urine cultures;

(6) Disease progression bias: we expect the time between clinical assessment and obtaining the urine samples to be minimal;

(7) Treatment paradox: for most children, antibiotic treatment will be started after the urine sample has been obtained, but we will record where this has not been possible;

(8) Handling of indeterminate or uninterruptible results or withdrawals: these parameters will be measured and considered in the analysis, and;

(9) Appropriateness of the reference standard: use of $>10^5$ cfu/ml is likely to detect the majority of children with UTI, but the second ‘research’ urine (see Economic model structure) will allow for sensitivity analyses around different bacterial concentrations. Where possible, we will measure all threats to validity (e.g. time between clinical assessment and obtaining and culturing the urine sample) that could influence results.

9.4 Sub-group & Interim Analysis

The sample will then be sub-divided into development and validation datasets. This will be done by randomly selecting practices: all of their patients will then contribute to one of the two datasets. Approximately 4,000 patients will be used for development of the algorithm and 2,000 used for validation.

We will develop a clinical prediction rule based on the linear predictor in a logistic regression model in which the outcome variable is a culture-positive urine result. Candidate prognostic variables will be categorised into demographic background and medical history (for example, gender, previous UTI); both specific and general systemic presenting symptoms and signs (for example overall illness severity, fever, vomiting); and results from urine dipstick analysis (nitrite, leukocyte esterase, protein, blood and glucose). Variables will be included in logistic regression models based on an “inclusive” p value threshold of 0.1. We will check for nonlinear effects of continuous variables, and will examine candidate interactions specified a priori. Such effects will be included in the final models as necessary. We will begin by examining the predictive value (based on diagnostic odds ratios and C statistics) of the best predictors from each of the three categories (socio-demographic and previous medical history, clinical assessment, and dipstick urinalysis) of variables. We will then examine the additional diagnostic value of presenting signs and symptoms (compared with socio-demographic and medical history alone) and of dipstick results (compared with the other two categories). We will examine whether it is possible to identify subgroups of children in whom
dipstick testing is and is not justified based on their signs and symptoms. The final diagnostic algorithm will be characterised based on its sensitivity and specificity, and positive and negative likelihood ratios.

9.5 Cost Effectiveness Analysis

9.5.1 Economic model structure

Cost per correct diagnosis of UTI will be estimated directly from primary DUTY data. However, a decision analysis model is needed to estimate more meaningful long-term cost and outcomes. The model will combine primary data collected in the DUTY study (e.g. accuracy of diagnostic algorithms, duration of symptoms) with literature estimates of unobserved parameters (e.g. effectiveness of antibiotics, incidence of long term complications) to identify the most cost-effective method for identifying children in whom urine collection and laboratory testing is appropriate. The model will also provide a template to measure the cost-effectiveness of ‘clean-catch’ versus nappy pads for obtaining samples in young children. In a sub-sample of children, we will use time-motion techniques to measure the additional time (parent/guardian and professional) taken to collect the urine sample during the primary care appointment and perform dipstick testing.

A Markov model will estimate the short- and long-run cost-effectiveness of diagnostic algorithms identified in DUTY. This work will build on the cost-effectiveness model developed in our recent HTA report (page 111). The final model structure will depend on the algorithms identified in the primary analysis and discussion with clinicians. New diagnostic algorithms will be compared to two ‘boundary strategies’: (1) no sample or test - treat all, and (2) no sample or test – treat none. These boundary strategies are not intended to reflect clinical reality, but provide a reference point against which other diagnostic strategies can be compared. In addition, we will include a third, ‘clinical judgement’ strategy as recorded in the CRF. Analysis of primary data will likely result in a ‘high sensitivity’ algorithm (i.e. liberal use of urine testing) and a ‘high specificity’ algorithm (i.e. parsimonious use) that will be compared to the boundary and clinical judgement strategies.

A diagnostic algorithm could assign a child to the high, medium, or low risk of UTI categories. The high-risk group are treated with antibiotics and for those meeting NICE guideline criteria, referred for further investigation (e.g. ultrasound, MCUG or DMSA). Some children are false positives, receiving antibiotics despite not having UTI. Children in the medium risk group have a urine sample sent for laboratory culture. Those who do not have UTI will incur the unnecessary cost of
urine collection and testing. However, assuming that laboratory culture is a gold standard test for UTI, these false positives will be identified before treatment commences. The low risk group will not be tested or treated for UTI, some false negatives may have longer symptom duration, higher risk of recurrence and long-term complications. The long-run Markov model will be based on the HTA model (page 113) allowing for recurrent UTIs with increasing risk of pyelonephritic attack and progressive renal scarring.

Several key model parameters will be informed directly by the DUTY study results. These include the initial prevalence of UTI, the diagnostic accuracy of diagnostic algorithms for identifying children with UTI, the cost of urine collection and the disutility of UTI symptoms. Based on these we will calculate the incremental cost per correct UTI diagnosis of each diagnostic strategy. Symptom duration and acute care costs will also be collected in DUTY; however other parameters, needed to calculate cost per symptomatic day avoided and cost per QALY, will be derived from previous research. The unit costs of tests, imaging, and therapy for UTI and long term complications of UTI will be based on national data (e.g. BNF, PSSRU, NHS reference costs) and published costing studies. Outcome parameters, such as the effectiveness of antibiotics, probability of UTI recurrence, renal scarring, end stage renal disease and survival will be based on literature estimates. Some literature estimates, particularly utility values in young children with UTI, are imprecise or even non-existent. Previous work in UTI used adult utility values as a proxy for young children. Despite imperfect data, we believe that it is important to estimate cost per QALY and use threshold analyses to explore the relationship between the short and long-term disutility caused by UTI and the cost-effectiveness of diagnostic algorithms. These analyses will allow tentative conclusions about the overall relative efficiency of each algorithm compared to other healthcare technologies.

Each parameter will be assigned a probability distribution to propagate parameter uncertainty throughout the model in a probabilistic sensitivity analysis. Costs and outcomes occurring after the first year will be discounted at 3.5%. We will use net monetary benefits and cost-effectiveness acceptability curves, at plausible willingness to pay thresholds (e.g. £0 to £50,000 per QALY) to identify the most cost-effective diagnostic strategy at each threshold. We will test the robustness of our results to the model structure using sensitivity analyses with different structural assumptions. Sensitivity analyses will also be used to evaluate the impact of key parameters on results and the influence of various CFU/ml thresholds on the choice of diagnostic algorithm.
10 Data Storage and Retention

All data will be kept for 15 years in line with Bristol and Cardiff Universities’ Research Governance Framework Regulations for clinical research. During the study, data will be stored on secure servers as part of the electronic primary care network. This will be archived after publication of results to a secure location at the University of Bristol.

11 Study Closure

Study recruitment will end when the last patient has been followed up or at the request of the Steering Committee. The end of the study will be considered as the date on which the last participant has completed their follow-up assessment (3 months note review in this case).

12 Regulatory Issues

12.1 Ethical Approval

DUTY will be conducted according to the principles of good research practice (including proper and appropriate conduct of research, professional integrity, honesty, statistical methods, use of data, interpretation of data, non plagiarism) and the Research Governance Framework for Health and Social Care.

The study will comply with NHS Ethics Committees and Health and Safety regulations. The storage, analysis and disposal of urine samples will accord with the requirements of the Human Tissue Act. The study will be approved by an appropriate National Research Ethics Service Committee before commencing.

12.2 Consent

Participation in the study will be entirely voluntary with parents/guardians or those legally allowed to consent for children given full information regarding what study participation involves, their right to withdraw and research dissemination plans. Full written consent will be obtained from those legally allowed to consent on children’s behalf, and all research staff with participant contact will have passed Criminal Records Bureau checks. Parents or guardians will be made aware that they can decide to withdraw from the study at any time, with no detrimental impact on current and future medical treatment.

12.3 Confidentiality

The Chief Investigators and the research team of DUTY preserve the confidentiality of participants in accordance with the Data Protection Act 1998. All research data will be handled according to the principles of the Data Protection Act, especially for sensitive, personal data. Data will be anonymised and stored on a
password protected computer located in secure University buildings and appropriately backed up. Data transfer across participant organisations will be closely monitored. A Privacy Risk Assessment in each regional centre will proactively identify and ameliorate risks of breaches to confidentiality and clearly designate the named individuals who will be allowed to access identifiable information. All data will be retained for up to 15 years post study closure in line with University of Bristol procedures.

12.4 Indemnity

The University of Bristol has agreed to sponsor this study. The University of Bristol will be responsible for, and administer the financial aspects of the grant.

The University of Bristol has arranged insurance to cover the legal liability of the University as Research Sponsor in the eventuality of harm to a research participant arising from management of the research by the University and as protocol authors for harm to participants arising from the design of the research.

All applicants and research staff employed on the study will hold honorary contracts with the appropriate Primary and Secondary Care Trusts, conferring the protection of the NHS clinical negligence arrangements for staff.

All participants will be recruited at NHS sites and therefore the NHS indemnity scheme/NHS professional indemnity will apply with respect to claims arising from harm to participants at site management organisations.

12.5 Study Sponsorship

The University of Bristol will act as sponsor for trial. Delegated responsibilities will be assigned to the Universities and NHS trusts taking part in this study.

12.6 Audits and Inspections

The DUTY trial is participant to inspection by NIHR HTA as the funding organisation. The study may also be participant to inspection and audit by the University of Bristol under their remit as sponsor.

13 Study Management

DUTY will be led by Co-Chief Investigators (CIs) as this ensures optimal integration of two centres that each bring unique expertise necessary for successful achievement of study objectives. For example, Cardiff brings experience from the
EURICA study that informs the DUTY study design, recruitment and data collection. Bristol brings world-class expertise on decision tool development. This is a collaboration between four Research Sites that is necessary to ensure sufficient population base to recruit to target, and two trial units (BRTC and the South East Wales Trials Unit (SEWTU)). Each centre will take responsibility for regional recruitment and liaison with local laboratories. BRTC will lead analysis of diagnostic and economic data. SEWTU will lead study set up and the overall data management including design of data collection and entry tools, monitoring data quality, and liaison with the research laboratory. London will lead the design, implementation and maintenance of the web based data collection system.

- Weekly project team meetings involving the CIs and the directly employed staff in each of the two trials units will cover day to day issues on each site.
- Monthly Study Management Group (SMG) meetings consisting of all co-applicants and directly employed staff will oversee the study. These will be predominantly via audio conference, but with an initial face-to-face meeting and then face-to-face at least every 6 months. This mix of face-to-face and frequent audio conferences has been highly successful on other collaborations between these teams. Additional meetings will be held on specific topics during the set-up phase covering data management and RN/CSO training.
- An Independent Study Steering Committee (SSC) will be convened to give independent oversight and will consist of a general paediatrician, a general practitioner, a statistician and two lay advisors. This group will meet before recruitment starts to agree the final protocol and then at least annually throughout the study. As this is an observational study with no randomisation or experimental interventions, a separate Data Monitoring and Ethics Committee will not be appointed. Instead, the SSC will take on data monitoring functions.

14 Data Handling and Record Keeping

In order to maximise the acceptability of data collection tools, clinicians will be able to choose between web-based and paper data collection. This approach has been used successfully in the MRC funded DESCARTE study (see www.DESCARTE.co.uk), with approximately 60% choosing the web-based system.

Data collection and management will be conducted using the Midlands Research Collaboration (MidReC)-en secure web-based system for primary care studies based in Birmingham. This has successfully been used over the past 9
years, including managing complex interventions43 and large numbers of subjects (>10,000 so far) for the DESCARTE study. The MidReC-en system enables study databases and web-based data-collection forms to be accessed securely from the NHS Network (N3) and The Universities Academic Network (JANET). The two networks are directly connected via the N3-JANET portal, and users in the NHS can authenticate and connect to MidReC-en via a single sign-on for the portal and the MidReC-en server. MidReC-en runs Citrix software that establishes a secure, encrypted, connection with the user’s PC, enabling access to identifiable study data for authorized users. The system avoids potential data loss, duplication and security issues with laptops and portable media. The system has been approved by the N3-JANET project board for connection to the NHS network.

Paper based CRFs will be available for clinicians due to preference or web site problems. These will be designed in Teleform and faxed via a confidential phone-line directly into a secure server at Cardiff University. These will be uploaded into the online database on a daily basis.

A full workflow protocol for data management will be developed between Cardiff and Birmingham, including access, data element definitions, analysis plans and rules for the closure of the database. Web-forms for data collection will be created using ASP/ASP.NET on top of a dedicated SQL data management server, with data variables forced to comply with entry and validation rules defined in the data element definitions. This design will be mirrored in Teleform for the paper based system and the same validation rules will be used. The SQL data management server incorporates auditing, backup and recovery facilities. The study workflow and algorithms will be enforced using the same methods, and a visual algorithm on the web pages will guide users. Both the paper and web-based systems will be piloted for ease of use and compliance with the plan.

Unique study numbers will be sequentially generated and used on pre-printed consent forms, urine sample labels and test request forms. The study number will be entered onto the system by the RN or CSO from the primary care site. It will be possible for the child’s socio-demographic, symptoms and signs data to be entered prior, and by a different user, to the urine dipstick results, since these may be only available several hours after recruitment. Data will be entered by the RN/CSO using the system via the practice’s N3 link. All urine specimens received at the site will be logged on the system using a check-box and by entering urine dipstick results. Once in the local NHS and Cardiff research laboratories, staff will be able to access an anonymised data collection page, where only study numbers and the data collection forms for the urine samples can be seen. They will log the samples on receipt and enter the results when available.
Follow up data: Between Day 12 and Day 21 from recruitment, and at month 3, research staff will enter cost, symptom duration and health utilization data from telephone interviews and practice records respectively and enter it onto similar web-based data collection forms, based on the study ID and demographic details recorded for consenting patients.

Recruitment and sample monitoring: The timeline will be enforced at specific workflow check-points where lists of subjects not having results in the required time, or requiring follow up by the clinical site will be automatically generated. Regional staff will access the system each day to identify tasks required.

Study monitoring: Paper records will be held for consent forms, a copy of which will be filed in the Bristol study office. As a source record of study entry, a read-coded and text entry in the medical record will be generated for pasting into the electronic health record at the time of entry to the study. This will contain a summary of the baseline data collection and confirmation of consent. Practices will scan the signed consent form into their record.

Future developments: During the period of the study, the MidReC-en system will be transferring to a specific web 2.0 clinical trial management system (The electronic Primary Care Research Network (ePCRN)). This will be in collaboration with the NHS Research Capability Program and the Primary Care Research Network. Existing web-forms and databases will not be replaced, but we may be able to deploy additional recruitment enhancements, such as automatic flagging and system initialization on entry of a diagnostic code into the health record, or direct remote data capture from the health record. These options will be tested and deployed if appropriate during the study.

15 Service User Involvement
15.1 Aims
Parent/guardian collaboration, particularly in the collection of urine samples, is key to the success of this study. The aims of service user involvement will be to: (1) optimise the recruitment strategy; (2) ensure study information and data collection forms are structured (e.g. content, layout, frequency) to optimise completion and minimise data loss; (3) advise on the logistics of urine sample collection, and (4) support the dissemination of results especially to harder to reach groups.

15.2 Methods
This study is heavily informed by the EURICA study that has in effect piloted many of the methods for engaging professionals and parents/guardians. In a pilot study for EURICA, we spoke to over 100 parents//guardians and asked them about
their experiences of the study and how this could be improved, which has informed DUTY processes. There will be four levels of parent/guardian involvement in DUTY, and all will have children who currently meet or have recently met (within 3 years) the eligibility criteria: (1) parents/guardians will be involved in further refining the methods and tools for the study through small group (similar to focus group format); (2) parents/guardians invited to participate will be asked for feedback using a ‘review of study’ questionnaire for voluntary completion at end of active study involvement; (3) two parents/guardians will be full members of the SSG (as opposed to the day-to-day management team) to provide feedback throughout the study and help with strategic decisions and; (4) we will engage local parent/guardian study champions. They will be supported to promote local awareness of the study through sharing information and promotional materials within their own local social networks such as mother and toddler groups, primary schools, church, ante-natal contacts, Sure Start and through personal friendship groups.

15.3 Dissemination to Participants

Parents/guardians will be asked to identify how we can best feed back the results to their social groups. At this stage (subject to review towards the end of the study) this is expected to take the form of equipping parent/guardian champions to be able to give a verbal report to local social groups as well as seeking their advice on parent/guardians study results’ summaries.

16 Publication Policy

In addition to the required final report and monograph for the HTA Programme, we will publish the main study results in international peer-reviewed journals and present at national and international scientific meetings. With the assistance of our collaborators and service users we will disseminate the study findings to a wide NHS and general audience. This will include presentations at meetings and written executive summaries for key stakeholder groups such as Primary and Secondary Care Trusts, Walk-in Centres, Out of Hours Centres, NHS Direct, health visitor groups, general practices and service users.
Project Timetable and Milestones

The Gantt chart below details the main project milestones.

<table>
<thead>
<tr>
<th>Study months</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethics & R&D approval (BRTC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appoint staff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcontracts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set-up centres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design patient packs & CRFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design & validate database</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Steering Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress reports to HTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set-up practices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print and prepare patient packs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set up study website</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produce patient materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recruitment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data checking & cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule development analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE analysis/modelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report writing (submit 14/01/13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results dissemination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study staff</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bristol manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bristol administrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bristol pack producer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiff data manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiff administrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional administrators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse/CSO 1 (with notes rv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse/CSO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
18 Study References:

(20) NICE. Urinary tract infection in children: diagnosis, treatment and long term management. 2007. London. Ref Type: Report

19 Appendices

Participant information sheets and consent forms, and GP letters, are stored separately.